Size effect in contact compression of nano- and microscale pyramid structures

نویسندگان

  • Junlan Wang
  • Jie Lian
  • Julia R. Greer
  • William D. Nix
  • Kyung-Suk Kim
چکیده

An electrochemical etching approach was developed to fabricate self-similar nanoand microscale pyramid structures on singlecrystal gold (100) surfaces. Using their unique self-similar characteristics, pyramids of (114) facets were compressed to study the length scale effects in the contact pressure and plastic deformation. At first, many pyramids were compressed simultaneously with a flat mica sheet to measure the ridge angle changes of the deformed pyramids with respect to the sizes of the flattened area. The ridge angle changes were scattered between approximately 2 and 13 for compression displacements of 50–350 nm, in contrast to the perfect plasticity prediction of 4.7 . Then, individual pyramids isolated with a focused ion beam were compressed with a flat tip nanoindenter for displacements of approximately 10–100 nm to obtain the relationship between the contact pressure and the compression depth. The plastic deformation-adjusted contact pressure evaluated by taking into account the initial 6–14 nm roundness offset of the pyramids is characterized by an initial increase up to approximately 2.5 GPa for a shallow compression depth within 10 nm followed by a gradual decay to approximately 450 MPa at a compression depth of 100 nm. This pressure seems to be still decaying towards an asymptotic value predicted by a continuum limit analysis. Given the size and self-similar nature of the pyramids, various mechanisms could possibly contribute to the observed scale dependence. The current study provides valuable experimental evidence for size-dependent material behavior at small length scales. 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of the Silicon Inverted Nano- Pyramid and Study of Their Self- Cleaning Behavior

In this paper, synthesis of inverted nano-pyramids on a single crystal silicon surface through a simple and cost-effective wet chemical method is surveyed. These structures were synthesized by MACE process using Cu as the assisted metal in the solution of copper nitrate, hydrogen peroxide and hydrofluoric acid for different etching times. FE-SEM images of the samples show that time is an import...

متن کامل

Deposition of Ultrathin Nano-Hydroxyapatite Films on Laser Micro-Textured Titanium Surfaces to Prepare a Multiscale Surface Topography for Improved Surface Wettability/Energy

The primary aim of this study was to analyse the correlation between topographical features and chemical composition with the changes in wettability and the surface free energy of microstructured titanium (Ti) surfaces. Periodic microscale structures on the surface of Ti substrates were fabricated via direct laser interference patterning (DLIP). Radio-frequency magnetron sputter deposition of u...

متن کامل

Study on Compression and Flexural Behavior of ABS-SiO2 Poly-mer Matrix Composite Fabricated by Hot Extrusion

In the present work, an experimental study was done to prepare Acrylonitrile-Butadiene-Styrene matrix composite reinforced by Nano-silica particles. The hot extrusion method was utilized here to fabricate the composite specimens used for flexural and compression tests. In order to identify the effect of SiO2 content and extrusion temperature, 12 experiments have been carried out and ...

متن کامل

Transverse Vibration for Non-uniform Timoshenko Nano-beams

In this paper, Eringen’s nonlocal elasticity and Timoshenko beam theories are implemented to analyze the bending vibration for non-uniform nano-beams.  The governing equations and the boundary conditions are derived using Hamilton’s principle. A Generalized Differential Quadrature Method (GDQM) is utilized for solving the governing equations of non-uniform Timoshenko nano-beam for pinned-pinned...

متن کامل

One Step Rapid Synthesis of Nano-Crystalline ZnO by Microwave-Assisted Solution Combustion Method

In this study nano-crystalline ZnO particles were synthesized by microwave-assisted solution combustion method. Zinc nitrate and urea were used as oxidizer and fuel, respectively. The effect of fuel to oxidizer (F/O) ratio on ZnO powder properties was investigated by using different urea/nitrate ratios. X-ray diffractometer, scanning electron microscopy and fourier transform infra-red were used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006